Selection of representative subsets of link key candidates

Nacira Abbas, Alexandre Bazin, Jérôme David, Amedeo Napoli

Atelier Decade, le 28/06/2022, St Etienne

Partly funded by Elker ANR project (ANR-17-CE23-0007-01)
Most of this work is from the PhD of Nacira Abbas (Loria, Nancy)

Data interlinking

Link keys

Link key candidates extraction (with FCA)

Link key candidate reduction and selection

Data interlinking
Link keys Link key candidates extraction (with FCA Link key candidate reduction and selectio

Data interlinking

Link keys

Link key candidates extraction (with FCA)

 Link key candidate reduction and selectionThe problem: RDF data interlinking

- Numerical specifications (Link Specifications)
- Express or learn a similarity from RDF data
- Generate links using frameworks such as SILK or LIMES
- NLP/IR based approaches
- Change representation: from RDF space to VSM, or embedding spaces
- Compute or learn a similarity on this new space
- Logical link specifications
- Key-based: combine keys and alignments for deducing links
- Link keys: cross dataset, generalization of keys without requiring alignment between properties or concepts
- Numerical specifications (Link Specifications)
- Express or learn a similarity from RDF data
- Generate links using frameworks such as SILK or LIMES
- NLP/IR based approaches
- Change representation: from RDF space to VSM, or embedding spaces
- Compute or learn a similarity on this new space
- Logical link specifications
- Key-based: combine keys and alignments for deducing links
- Link keys: cross dataset, generalization of keys without requiring alignment between properties or concepts
Data interlinking
Link keys
Link key candidates extraction (with FCA)
Link key candidate reduction and selection

What is a link key?

two sets of property pairs and a pair of classes like

On this example, the link key will generate the link (a, owl: sameAs, b)

A more complex example

They may be several expressions having the form of link keys

D (Employés)					D^{\prime} (Staff)				
id	prenom	datenaiss	poste	bât.	firstname	birthdate	position	building	id
i_{2}	Paul	1967	Dir.	B2	Paul		Dir.	B2	z_{2}
i_{3}	Mary	1963	Dir.	B1	Mary		Dir.	B1	z_{3}
i_{4}	John	1963	Pr.	B1	John		Pr.	B1	z_{4}
i_{6}	Bill	1980	Pr.	B1	William	1980	Pr.	z_{6}	
i_{7}	Ana	1947	Dir.	B2	Ana	1947	Dir.	z_{7}	
i_{8}	John	1967	Pr.	B2	John	1967	Pr.	z_{8}	

Example of link key expressions:
$>k=\langle\{ \},\{\langle$ datenaiss, birthdate $\rangle\},\langle$ Employe, Staff $\rangle\rangle$
$\rightarrow h=\langle\{\langle$ datenaiss, birthdate $\rangle\},\{\langle$ poste, position $\rangle\}\langle$ Employe, Staff $\rangle\rangle$
$>l=\langle\{\langle$ datenaiss, birthdate \rangle,\langle poste, position $\rangle\},\{\langle$ poste, position $\rangle\},\langle$ Employe, Staff $\rangle\rangle$
And generated links (if used as link keys):
$\rightarrow L_{k}^{D, D^{\prime}}=\left\{\left\langle i_{7}, z_{7}\right\rangle,\left\langle i_{8}, z_{8}\right\rangle,\left\langle i_{6}, z_{6}\right\rangle,\left\langle i_{2}, z_{8}\right\rangle\right\}$
$>L_{l}^{D, D^{\prime}}=L_{h}^{D, D^{\prime}}=\left\{\left\langle i_{7}, z_{7}\right\rangle,\left\langle i_{8}, z_{8}\right\rangle,\left\langle i_{6}, z_{6}\right\rangle\right\}$

A more complex example

They may be several expressions having the form of link keys

	D (Employés)				D^{\prime} (Staff)				
id	prenom	datenaiss	poste	bât.	firstname	birthdate	position	building	id
i_{2}	Paul	1967	Dir.	B2	Paul		Dir.	B2	z_{2}
i_{3}	Mary	1963	Dir.	B1	Mary		Dir.	B1	z_{3}
i_{4}	John	1963	Pr.	B1	John		Pr.	B1	z_{4}
i_{6}	Bill	1980	Pr.	B1	William	1980	Pr.		z_{6}
i_{7}	Ana	1947	Dir.	B2	Ana	1947	Dir.		z_{7}
i_{8}	John	1967	Pr.	B2	John	1967	Pr.		z_{8}

Example of link key expressions:
$-k=\langle\{ \},\{\langle$ datenaiss, birthdate $\rangle\},\langle$ Employe, Staff $\rangle\rangle$
$\rightarrow h=\langle\{\langle$ datenaiss, birthdate $\rangle\},\{\langle$ poste, position $\rangle\}\langle$ Employe, Staff $\rangle\rangle$
$\downarrow l=\langle\{\langle$ datenaiss, birthdate \rangle,\langle poste, position $\rangle\},\{\langle$ poste, position $\rangle\},\langle$ Employe, Staff $\rangle\rangle$
And generated links (if used as link keys):
$-L_{k}^{D, D^{\prime}}=\left\{\left\langle i_{7}, z_{7}\right\rangle,\left\langle i_{8}, z_{8}\right\rangle,\left\langle i_{6}, z_{6}\right\rangle,\left\langle i_{2}, z_{8}\right\rangle\right\}$
$>L_{l}^{D, D^{\prime}}=L_{h}^{D, D^{\prime}}=\left\{\left\langle i_{7}, z_{7}\right\rangle,\left\langle i_{8}, z_{8}\right\rangle,\left\langle i_{6}, z_{6}\right\rangle\right\}$

A more complex example

They may be several expressions having the form of link keys

	D (Employés)				D^{\prime} (Staff)					
id	prenom	datenaiss	poste	bât.		firstname	birthdate	position	building	id
i_{2}	Paul	1967	Dir.	B2		Paul		Dir.	B2	z_{2}
i_{3}	Mary	1963	Dir.	B1		Mary		Dir.	B1	z_{3}
i_{4}	John	1963	Pr.	B1		John		Pr.	B1	z_{4}
i_{6}	Bill	1980	Pr.	B1	\rightarrow	William	1980	Pr.		z_{6}
i_{7}	Ana	1947	Dir.	B2		Ana	1947	Dir.		z_{7}
i_{8}	John	1967	Pr.	B2	\rightarrow	John	1967	Pr.		z_{8}

Example of link key expressions:
$-k=\langle\{ \},\{\langle$ datenaiss, birthdate $\rangle\},\langle$ Employe, Staff $\rangle\rangle$
$\rightarrow h=\langle\{\langle$ datenaiss, birthdate $\rangle\},\{\langle$ poste, position $\rangle\}\langle$ Employe, Staff $\rangle\rangle$
$\downarrow l=\langle\{\langle$ datenaiss, birthdate \rangle,\langle poste, position $\rangle\},\{\langle$ poste, position $\rangle\},\langle$ Employe, Staff $\rangle\rangle$
And generated links (if used as link keys):
$-L_{k}^{D, D^{\prime}}=\left\{\left\langle i_{7}, z_{7}\right\rangle,\left\langle i_{8}, z_{8}\right\rangle,\left\langle i_{6}, z_{6}\right\rangle,\left\langle i_{2}, z_{8}\right\rangle\right\}$
$L_{l}^{D, D^{\prime}}=L_{h}^{D, D^{\prime}}=\left\{\left\langle i_{7}, z_{7}\right\rangle,\left\langle i_{8}, z_{8}\right\rangle,\left\langle i_{6}, z_{6}\right\rangle\right\}$

Data interlinking
 Link keys

 Link key candidates extraction (with FCA)

 Link key candidates extraction (with FCA)}
Link key candidate reduction and selection

Problem: How to induce link keys from data?

The number of set of pairs of properties is exponential

Our approach:

- restrict on link key expressions that would generate at least one link between the datasets
- consider only closed expressions : those which are maximal for a set of links
we call such expressions "link key candidates" (LKC) and we extract them using Formal Concept Analysis

Formal context for candidate link key extraction

The formal context for link key candidates $\langle G, \mathcal{M}, I\rangle$ is:

M	\ldots	$\exists\left\langle p_{i}, p_{j}^{\prime}\right\rangle$	\ldots	\ldots	$\forall\left\langle p_{i}, p_{j}^{\prime}\right\rangle$	\ldots
\vdots	\ddots	\vdots	\ddots	\ddots	\vdots	\ddots
$\left\langle o, o^{\prime}\right\rangle$	\ldots	1 iff $p^{D}(o) \cap p^{\prime D^{\prime}}\left(o^{\prime}\right) \neq \emptyset$	\ldots	\ldots	1 iff $p^{D}(o)=p^{\prime D^{\prime}}\left(o^{\prime}\right)$	\ldots
\vdots	\ddots	\vdots	\ddots	\ddots	\vdots	\ddots

- G : the set of pairs of objects from each dataset
- M : two sets of pairs of properties from each dataset
- \exists : if the objects share at least one value $\left(\left\langle o, o^{\prime}\right\rangle I \exists\left\langle p_{i}, p_{j}^{\prime}\right\rangle\right)$
- \forall : if the object have the same values $\left(\left\langle o, o^{\prime}\right\rangle N\left\langle p_{i}, p_{j}^{\prime}\right\rangle\right)$

Lattice of extracted link key candidates

FCA link key extraction is implemented in Linkex (https://gitlab.inria.fr/moex/linkex)

Characteristics/functionalities:

- Fully unsupervised: only two RDF datasets as input.
- Normalization of textual content: lowercase, remove diacritics, tokenization, sort
- Can compute inverse and composition of properties
- Compute the class expression of concepts (i.e. covering instances)
- Different output formats: Alignment Format, GraphViz (dot), tabular file, etc.
- Implementation of diverse quality measures (discriminability, coverage, etc)

Data interlinking

Data interlinking

Link keys

Link key candidates extraction (with FCA)

Link key candidate reduction and selection

The problem: link key selection

Many link key candidates can be extracted!
ex: OAEI Spimbench task, $>2 k$ candidates

How to reduce the lattice and select the interesting/representative ones?

1. Reduce

- Identify redundant LKC according to owl: sameAs semantics
- Representative link key candidates based on clustering

2. Evaluate

- Quality measures: discriminability and coverage

3. Combine: Disjunctions based on antichains

- Explore the antichains of the LKC lattice

The problem: link key selection

Many link key candidates can be extracted!
ex: OAEI Spimbench task, $>2 k$ candidates

How to reduce the lattice and select the interesting/representative ones?

1. Reduce

- Identify redundant LKC according to owl: sameAs semantics
- Representative link key candidates based on clustering

2. Evaluate

- Quality measures: discriminability and coverage

3. Combine: Disjunctions based on antichains

- Explore the antichains of the LKC lattice

Pattern structure for link key candidate discovery

Pattern structure: $(G,(E, \sqcap), \delta)$

PS objects	Descriptions (δ)
G	E
$\left(a_{1}, b_{1}\right)$	$\left\{\exists\left(p_{1}, q_{1}\right), \exists\left(p_{2}, q_{2}\right)\right\}$
$\left(a_{1}, b_{2}\right)$	$\left\{\exists\left(p_{2}, q_{2}\right)\right\}$
$\left(a_{2}, b_{1}\right)$	$\left\{\exists\left(p_{1}, q_{1}\right)\right\}$
$\left(a_{2}, b_{2}\right)$	$\left\{\exists\left(p_{1}, q_{1}\right), \exists\left(p_{2}, q_{2}\right)\right\}$
$\left(a_{3}, b_{3}\right)$	$\left\{\forall\left(p_{1}, q_{1}\right), \exists\left(p_{1}, q_{1}\right), \exists\left(p_{2}, q_{2}\right)\right\}$
$\left(a_{4}, b_{4}\right)$	$\left\{\forall\left(p_{3}, q_{3}\right), \exists\left(p_{3}, q_{3}\right)\right\}$
$\left(a_{4}, b_{5}\right)$	$\left\{\forall\left(p_{4}, q_{4}\right), \exists\left(p_{4}, q_{4}\right)\right\}$
$\left(a_{5}, b_{4}\right)$	$\left\{\forall\left(p_{4}, q_{4}\right), \exists\left(p_{4}, q_{4}\right)\right\}$
$\left(a_{5}, b_{5}\right)$	$\left\{\forall\left(p_{3}, q_{3}\right), \exists\left(p_{3}, q_{3}\right)\right\}$

Nacira Abbas, Jérôme David, Amedeo Napoli: Discovery of Link Keys in RDF Data Based on Pattern Structures: Preliminary Steps. CLA 2020: 235-246

Pattern Structures lattice

Pattern Structures lattice

Partition pattern Structures lattice

Idea: use Partition pattern structures to detect redundant LKC

Link key candidates having the same partition are in the same concept

Nacira Abbas, Alexandre Bazin, Jérôme David, Amedeo Napoli: A Study of the Discovery and Redundancy of Link Keys Between Two RDF Datasets Based on Partition Pattern Structures. CLA 2022: to appear

This works but ... this is not so useful in practice :- (

Interlinking task	datasets	\#triple	\#subj	\#prop	\#LKC	\#NRLKC
Actor	db:Actor yago:Actor	$\begin{gathered} 94606 \\ 1029580 \end{gathered}$	$\begin{gathered} 5807 \\ 108415 \end{gathered}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	2198	2177 (\downarrow 1\%)
Album	db:Album yago:Album	$\begin{aligned} & 594144 \\ & 762238 \end{aligned}$	$\begin{gathered} \hline 85002 \\ 136848 \end{gathered}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	44	44
Book	db:Book yago:Book	$\begin{aligned} & 247372 \\ & 185032 \end{aligned}$	$\begin{aligned} & 29846 \\ & 41849 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	82	82
Film	db:Film yago:Film	$\begin{aligned} & 1369600 \\ & 1067084 \end{aligned}$	$\begin{gathered} 82099 \\ 123822 \end{gathered}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	18718	17643 (\downarrow 5\%)
Mountain	db:Mountain yago:Mountain	$\begin{aligned} & 135442 \\ & 233562 \end{aligned}$	$\begin{aligned} & 16397 \\ & 32874 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	39	39
Museum	db:Museum yago:Museum	$\begin{gathered} 15940 \\ 163342 \end{gathered}$	$\begin{gathered} 1826 \\ 21050 \end{gathered}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	48	48
Organization	db:Organization yago:Organization	$\begin{aligned} & 4487205 \\ & 4410854 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 183665 \\ & 430071 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	1425	1425
Scientist	db:Scientist yago:Scientist	$\begin{aligned} & 128360 \\ & 671266 \end{aligned}$	$\begin{array}{r} 18409 \\ 92828 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 18 \\ & \hline \end{aligned}$	862	862
University	db:University yago:University	$\begin{aligned} & 241838 \\ & 263624 \\ & \hline \end{aligned}$	$\begin{aligned} & 10352 \\ & 23334 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	213	213

\#LKC: number of link key candidates. \#NRLKC: number of "non redundant" link key candidates.

Datasets from

Danai Symeonidou, Luis Galárraga, Nathalie Pernelle, Fatiha Saïs, Fabian M. Suchanek: VICKEY: Mining Conditional Keys on Knowledge Bases. ISWC (1) 2017: 661-677

Similarity between link keys

However, a lot of link key candidates generate almost the same links...

We propose to select a subset of representative candidates.

The procedure is as follows:

1. similarity is computed thanks to Jaccard index (between sets of links)
2. LKC are clustered with hierarchical agglomerative clustering
3. clusters are extracted from the resulting hierarchy
4. a representative LK is selected for each cluster

- the LKC that minimizes the distance to the other

LKC clustering

Cut at 0.5:

- 4 clusters: $\left\{k_{1}, k_{2}, k_{3}\right\},\left\{k_{4}\right\}$ and $\left\{k_{6}\right\}$
- representatives (core): $\left\{k_{3}, k_{4}, k_{6}, k_{7}\right\}$
- This gives a compression ratio of 0.43 while preserving 77% of links.

Results on benchmarks

- Almost 50% of LKC can be removed without loss
- Core LKC are good representative (and preserve F-Measure).

The context:

- Link keys are symbolic and meaningful tool for interlinking data
- Fully unsupervised extraction from data with minimal input
- But... a lot of candidates can be discovered

Contributions:

- A pattern structure for non redundant link key w.r.t. owl: sameAs
- A clustering based strategy for selecting representative subset of LKC

Perspectives:

- Combine this approach with selecting disjunctions of LKC
- Generalize this clustering approach to FCA lattice reduction
- Goal: reduce the \# of concepts while preserving the order
- adapt the similarity measure to FCA lattices
$\frac{|L(a \wedge b)|}{|L(a \vee b)|}$ instead of $\frac{\mid L(a) \cap L() b) \mid}{|L(a) \cup L(b)|}$
- design an optimised algorithm

Questions?

https://moex.inria.fr

Nacira . Abbas
Jerome . David
Amedeo . Napoli
@ inria. fr
@ loria. fr

